
COCO: A Web-Based Data Tracking Architecture for

Challenged Network Environments
Saureen Shah

Digital Green
 New Delhi, India

saureen@digitalgreen.org

Apurva Joshi
Digital Green

New Delhi, India

apurva@digitalgreen.org

ABSTRACT

Data tracking and analytics methods for organizations operating in

rural locations are cumbersome – particularly for the many that

continue to use traditional, non-electronic methods. To evaluate

effectiveness and productivity, these organizations are being

asked to adopt data and analytics methodologies that are

technology oriented in nature. Today, network connectivity is

increasing even in the most remote locations and electronic data

input is gradually becoming less of an impediment to data

collection. To be sure, uninterrupted bandwidth availability still

eludes these locations, making it difficult for traditional web

applications to function. In cognizance of intermittent to zero

bandwidth availability in rural locations, we propose COCO

(connect-online, connect-offline), a data input framework

designed to seamlessly enable online as well as offline connection

capabilities for applications. By building on the COCO

framework, applications can continue operating by going offline.

Preliminary results show that applications built on the COCO

framework achieve low latency and high execution speeds by

virtue of the framework‟s browser-client architecture. We also

demonstrate the effectiveness of a COCO framework-enabled

application over a traditional web application when run in a lab,

and in rural locations.

General Terms

Design, Performance, Management, Reliability, Standardization.

Keywords

ICT4D, Content Management System, Model View Controller

(MVC), NGO, Rural Development, Offline, Low bandwidth,

Intermittent network.

1. INTRODUCTION
Tracking performance and productivity is integral to an

organization in managing its various business functions, and

reporting to its stakeholders. Over the last few decades, methods

to track have evolved from rudimentary, non-electronic

bookkeeping to sophisticated business intelligence and analytics

systems built by enterprise software makers [1, 2]. While these

systems are sophisticated, almost all come at an exorbitant price,

and are often laden with features meant for large-enterprise

customers. Small to mid-sized organizations typically do not

require such complex systems, but still desire comparable tracking

and analytics capabilities. Many among these organizations are

non-profit, non-governmental organizations (NGOs).

Learning from the corporate space, NGOs and their donors are

increasingly recognizing the importance of tracking and analytics

capabilities. For NGOs with operations in rural locations,

adopting new technologies to enable electronic data collection can

be slow, and from a logistics and infrastructure perspective,

laborious [3]. By and large, these organizations still rely on paper

forms to input and collect information, typically done in remote

field locations [4]. After collection, these forms are typically

hand-delivered or couriered back to relatively better-connected

regional offices for electronic data input or permanent storage.

While these cases have some semblance to data collection, they

both have their shortcomings. In the case of electronic data input,

NGOs may benefit from some degree of data compilation and

analysis, although frequently, such data is prone to loss, error, and

subject to lag in delivery, mostly due to logistical challenges; and

in the case of permanent storage, since this data is typically stored

in paper format, any future possibility of electronic data input

becomes invariably harder because of storage upkeep challenges

and data loss over long maintenance durations.

Many of these issues have been mitigated with the increasing

availability of network connectivity. But to be sure, network

reception is most commonly accessed through commercial

wireless data connections that come with limited service

guarantees, especially in remote locations. In practice, most data

connections provide bandwidth access commensurate with GPRS

speeds, and remain prone to lost connections. In such an

environment most web applications perform poorly. Latency of

page loads is high, and as a result, page time-outs in browsers are

common [5]. Also, most traditional web applications are built

with respect to the client-server model. As the number of server

round trips increase, overall user experience degrades.

Applications developed with a client-side architecture, while

resilient to common latency problems, still perform poorly when a

data connection is completely lost. In an attempt to solve these

problems in the context of the aforementioned environment, we

propose a software system that leverages client-side resources and

continues to operate during severed network connections. We call

this system COCO – connect online, connect offline.

COCO is designed to support data-tracking activities for

organizations with sizeable field operations and where

organization staff may only have access to intermittent and/or

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ACM DEV'10, December 17-18, 2010, London, United Kingdom.

Copyright 2010 ACM 978-1-4503-0473-3-10/12... $10

poor-quality Internet connectivity. COCO is built as a standalone

application in the Internet browser and requires no additional

desktop software installation or maintenance. The system is

designed in an open-source, customizable framework that can be

deployed without the need of professional IT or engineering staff.

Some of the key features provided by the COCO framework

include:

1. The Model View Controller (MVC) framework architecture:

COCO is designed using the model-view-controller pattern

[6]. Developers familiar with some of the most ubiquitous

web development frameworks can easily build data input

applications on COCO. The architecture allows COCO to be

available as a framework, making many of its components

and features reusable.

2. Offline mode: One of COCO key features is to allow an

application to continue to operate without internet

connectivity. In COCO, this mode is user induced. On

detecting low bandwidth, or repeated severed connections, a

user can click on an „Offline/Online‟ UI element to toggle

between connection modes. These UI elements are

integrated as part of the framework.

3. Latency and execution speed: COCO achieves low latency

and high execution speeds by virtue of its architecture.

While offline, an application built on COCO runs entirely on

the client-browser. This enables COCO to take advantage of

the client‟s resources, and as a result, eliminates the need for

any data connection requirements. In online mode, COCO

achieves better to comparable latency compared to traditional

web applications by making data requests only when

absolutely required. Incurring client-server roundtrip costs

are virtually eliminated by the nature of the client

architecture, and an accompanying cache.

The COCO system‟s framework is developed using a variety of

web technologies and reference to related work.

In the next section, we discuss related work that led to the

creation of COCO. In Section 3, we describe the COCO

architecture, key design decisions, and relevant implementation

details. In the following section, we describe and evaluate

preliminary results. And finally, in the last section we summarize

the primary motivation for COCO, and discuss future work.

2. RELATED WORK
In the ideation phase of COCO, we explored related work in both

the academic and commercial spaces. As conveyed earlier,

COCO was inspired by an appreciation for similar and proven

systems in the commercial space. Although an immense corpus of

related work exists in the academic and commercial spaces, our

goal has been to appropriate many of these ideas into a simple,

scalable, and robust implementation.

A fair amount of work can be found in the area of local browsing.

Rhea [11] proposes a technique called value-based caching by

breaking contents of a page into small blocks and serving these

blocks in remote areas through pre-calculated hashes. This

architecture makes efficient use of bandwidth, but requires a

proxy to store hashes for all blocks per client. The COCO system

employs an approach of caching all requisite static content before

using the application, making availability of this content

guaranteed. A proposal by Chan et al [12] involves caching static

content asynchronously when a browser makes a request and

receives a response. This technique may be useful for areas with

intermittent connectivity, but unviable in zero connectivity

situations.

In the context of the developing world, the TEK system [22,23]

aims to empower low-connectivity communities by providing a

full Internet experience using email as the transport mechanism.

The TEK client operates as a proxy on the user's machine,

enabling users to browse downloaded pages using a standard Web

browser. New searches are automatically encoded as emails and

sent to the TEK Server, which queries the Web and returns the

contents of resulting pages via email. While beneficial for web

browsing, this architecture is less appropriate for data input

applications where the input data needs to be validated and

synchronized with the main server.

Mechanical backhaul networks [24, 25, 33] which use physical

transportation systems have also been deployed in many rural

regions. DakNet [24] provides email and Web connectivity by

copying data to a USB drive or hard disk and then physically

carrying the drive among locations that have no traditional

network connectivity, sometimes via motorcycles. Mechanical

backhaul networks are intermittent by nature. They have long

delays and are operational only for a few times every day.

Some researchers have taken broader approaches to solve the

intermittent connectivity issue in rural areas. For instance, The

Delay tolerant network (DTN) [26, 27] architecture aims to

provide interoperable communications between and among a wide

range of networks that may have poor and variable performance

characteristics. The design embraces the notions of message

switching with in-network retransmission, late-binding of names,

and routing tolerant of network partitioning to construct a system

better suited to operations in challenged environments than most

other existing network architectures, particularly today‟s TCP/IP

based Internet. Another example called the WiRE network [10]

aspires to build a comprehensive connected network in rural

areas. These examples advocate a change to the basic service

model and system interface most web applications have become

accustomed to. In another example, RuralCafe [9] intends to

support efficient web search over intermittent networks. The

RuralCafe approach requires hardware such as local and remote

proxies, and clients. Search results are pre-fetched and stored in

proxies that serve as a cache. While beneficial for the purpose of

search, this architecture is difficult for COCO to piggyback on

because of its specialization. Solutions such as DTN, WiRE and

RuralCafe offer alternatives in network architecture to mitigate

bandwidth problems in remote regions, and while there is

potential in its use for complex problems, simple data input

applications at the level of COCO‟s complexity can continue to

operate with low cost GPRS.

A reasonable corpus of work is also available on distributed file

systems, designed to operate in low bandwidth environments.

Coda [28] is a distributed file system with its origin in AFS2. It

has several features like disconnected operations for mobile

computing, high performance through client side persistent

caching that are desirable for network file systems. Another

distributed file system, TierStore [29], simplifies the development

and deployment of applications in challenged network

environments. For effective support of bandwidth-constrained and

intermittent connectivity, it uses the Delay Tolerant Networking

store-and-forward network overlay and a publish/subscribe-based

multicast replication protocol. Both file systems are limited in

widespread practical use because of confinement to platform and

network architecture. And even though these file systems are

fitting for applications that require sharing of storage and files

among peers, their setup becomes complex for simple tasks easily

addressable by systems similar to COCO.

Some researchers have considered system architectures that

address the challenges of poor, intermittent connectivity. The

aAQUA portal [7] is a system that offers an offline extension to

allow farmers to continue to use their forum application in rural

areas. To make this application available on the client machine,

aAQUA requires a few additional technologies. The most relevant

of these technologies include a database to store a partition of the

dataset, and a webserver to service browser requests [8]. The

aAQUA portal‟s architecture emulates a browser experience by

making the browser a light-weight client, offloading all business

logic to a desktop application. The COCO system in contrast

provides a framework to give traditional web data-input

applications offline properties. Deployment of COCO is also

simpler because of its browser-client architecture, requiring no

additional hardware bound desktop software installations.

A number of commercial systems exist to track and analyze

enterprise data online. These include systems by Salesforce

Corporation [1], and a few of its competitors. Salesforce, for

example, offers highly customizable products in the data and

analytics space, but follows a license model, which makes it

financially prohibitive to share analytics with a wider audience.

The company also provides offline capabilities as a desktop

application, although this approach makes it difficult to deploy in

rural locations and cumbersome for much needed software

updates. While the company recommends building a browser

based system by employing similar techniques as COCO, it falls

short of practicability, much less a framework implementation.

Other related works offer improvements for parts of the COCO

system. Approaches like Numeric paper form for NGOs [4] and

CAM [30] could help an organization using COCO digitalize

paper forms. Other works like Open Data kit [31, 32] and Warana

Unwired [13] could enable COCO‟s usage to become widespread

for organizations interested in direct data collection via mobile

phones.

The COCO system was created by using and analyzing

commercial systems, and by synthesizing academic work most

relevant to data tracking and analytics in poor, intermittent

connectivity areas.

In the next section we describe the design and deployment of the

COCO system in depth.

3. SYSTEM DESCRIPTION
The COCO system is designed as an application residing in the

browser. The system is accessible as any other website by simply

requiring the client to load a URL. Designed as a framework, the

system follows from the model-view-controller (MVC) pattern

[6], adopted by existing web frameworks. To support offline

properties, the COCO system employs the use of a light-weight

relational database and local cache, both stored in the browser.

Data that is stored in the relational database during offline mode

is populated and replicated back to the global repository through

synchronization techniques. The system checkpoints at the

database row-level to ensure data consistency and integrity, and to

make synchronization tasks resumable. The next section delves

into the technical details of the COCO system architecture.

The COCO system is architected as a Java web-framework,

similar to and in proximate feature parity with popular

frameworks such as Django [14] or Ruby on Rails [15]. The core

of COCO's framework comprises of a variety of open source

technologies. To maximize performance as a browser application,

COCO is developed using the GWT 2.0 (Google Web Toolkit)

Java software development framework [16]. GWT offers the

ability to develop client-side JavaScript front-end applications in

Java. COCO communicates with the server side framework by

transferring data in the widely accepted JavaScript Object

Notation (JSON) [17] format.

To enable offline mode, COCO employs the use of Google Gears

[18], a browser plug-in that provides a persistent SQLite database

to store data relationally and a local cache to access all requisite

static content. In offline mode, a compiled Javascript file is

generated and added to Google Gear's client cache for access by

the browser. In online mode, COCO operates like any other web

application, and is designed to reduce the number of requests to

the server.

Figure 1: COCO Architecture

The COCO framework comprises three layers following the

model-view-controller (MVC) pattern: template, servlet, and data

(See figure1). The template layer defines the application UI. It

makes use of HTML, CSS, images and some sparing use of native

JavaScript to describe web forms. The template layer uses a

„RequestContext‟ object to exchange information with the servlet

layer, attempting to emulate a real-world HTTP request. The

„RequestContext‟ serves as a data packet to transfer information

from the template layer to the servlet layer. Each time a request is

made by the template, the nature of the request is set similar to

how the HTTP protocol sets a GET or POST. A query string

containing name and value pairs is also passed down as a variable

in the Request Context object.

The servlet layer is the business logic of the framework. It makes

calls to the appropriate functions defined in the data layer based

on the nature of the request from the template. It passes an

„OnlineOfflineCallback‟ object to the data layer. Functions

defined in the „OnlineOfflineCallback‟ object are called back

when the data layer sends data back to the servlet, depending on

whether the request is served from the online web server, or the

local offline database.

The data layer on receiving a request from the servlet determines

the status of the application. If the application is online, the data

request is served from the online repository, otherwise from the

client‟s local database. Data transfer from the online repository

takes place in the form of JSON objects while data transfer from

the local database is in form of „ResultSet‟ objects returned on

running the SQL query. The data layer de-serializes the response

returned from the online repository or local database into Java

objects and passes these Java objects to the servlet layer using

„OnlineOfflineCallback‟ functions. The servlet layer then

performs the application logic and passes back a response to the

template layer. The template layer parses the response and

renders changes to the browser.

3.1 Synchronization Details
One of the primary features of COCO is to operate in areas with

intermittent connectivity. For an application to operate

seamlessly, COCO caches static content and user data on the local

client. COCO makes use of a technology called Google Gears,

which has an inbuilt server that is capable of serving static content

locally. Google Gears also provides a SQLite database which

stores user data locally. Periodically, as and when network

connectivity becomes available, user data is synchronized with the

main repository to establish a consistent view between the local

and global databases.

We have divided our synchronization process into two stages: (1)

downloading data from the online repository to the local database

and (2) uploading added user data from the local database to the

online repository.

A user enables offline mode in COCO by downloading their data

from repository while in online mode. The download initiates a

HTTP GET request, sending along with it the user‟s login

credentials. In response, the server replies with a unique id

associated with the user. This unique id serves as a global primary

key, shared across all tables, in the user‟s local database. This

global primary key gets incremented on each SQL „insert‟

operation into the local database.

Figure 2: Download operation

After receiving the global primary key and saving it into the local

database, the application issues another HTTP GET request to the

server with an easily customizable application constant called

„Page size‟. Page size is the number of table rows to be retrieved

from the server with each GET request. The server, in turn,

returns rows equal to page size as a JSON response object. On

receiving the response, the application de-serializes the response

into Java objects and stores them into the local database. The

application then updates the global primary key in the local

database. The application continues to make HTTP GET request

to the server until it receives a marker to denote end of transfer.

The download process can resume from the last inserted row if a

GET request is interrupted or the connection is lost during the

download process.

Once the user‟s data is completely downloaded, he/she can

operate the application in offline mode. In offline mode, all user

operations are logged into a local table called „FormQueue‟. With

network connectivity, a user can synchronize this data by

uploading it back to the online repository.

Figure 3: Upload operation

The upload process reads each row from the „FormQueue‟ table

and makes a POST request to the online repository. This module,

like download, is also resumable.

3.2 Deployment
The COCO system can be easily installed without the need of

IT/engineering staff. On logging into the COCO system, users see

a dashboard as shown in figure 4:

Figure 4: A screenshot of COCO application

By default the application is in online mode. Users can choose to

go offline by downloading their data and then clicking on the „Go

Offline‟ link. When a user clicks on the download link, he/she

will be prompted to download Google Gears if it is not already

installed on the user‟s browser. Once Google Gears has been

installed, downloading of data will start on clicking the download

link. The application can be offline enabled by clicking on the

„Go Offline‟ link, once the downloading is complete.

Users can perform all operations in offline mode that can be

performed in online mode. They can choose to go online when

they have connectivity by clicking on „Go Online‟ toggle button.

Once they are online, they can upload their local modified data

back to the main server by clicking on the „Upload‟ button. When

the data has been uploaded to the main server, locally added data

becomes visible globally.

COCO is deployed at various rural locations in India that

experience intermittent Internet connectivity. We describe

preliminary results and feedback in the next section.

4. PRELIMINARY RESULTS
We installed the system for an India-based NGO – Digital Green

[19] – and ran preliminary tests both in the lab and in the field

with live data and real users. For the purpose of consistency, we

collected our data by running the same tests for the same user in

the lab and in the field, ensuring consistency in data sizes across

test environments. Tests were conducted by simply using the

application. Test results measuring latency were captured by web-

profiling tools. In addition, we used networking desktop tools to

collect information on basic statics such as bandwidth speeds and

latency between packet hops. The following sections are an

evaluation of our results by making a comparison between a

traditional web application and the COCO system.

4.1 Methodology
We evaluate the benefits of COCO in two test environments,

Digital Green lab with access to high-speed broadband, and a

village, characteristic of a remote location with access to limited

data connectivity. For both cases, we compare a simple data input

system across three modes of operation: a traditional web

application, COCO‟s online mode, and COCO‟s offline mode.

Moreover, in both instances we hope to highlight COCO‟s three

most salient benefits: continued offline operation for limited

bandwidth situations, latency savings by reducing client-server

roundtrips, and finally, execution speeds by virtue of COCO‟s

browser-client design. In our evaluation, we use Digital Green‟s

(NGO) data input application [20] as an example. The following

are functional tests conducted across all modes of operation:

1. A test that compares retrieving and adding a simple web

form. This test measures the time it takes to retrieve and

save a small amount of data by issuing a HTTP GET and

POST request, respectively. The test is conducted for a

traditional web application and COCO‟s online mode. The

equivalent test for COCO‟s offline mode is only relevant in

the village setting given the broadband access in the lab

setting.

2. A test that compares retrieving and adding a complex web

form to gauge scalability across modes of operation. This

test is similar to the first test in what it intends to measure.

We also conducted tests to measure overall task completion time

for COCO‟s synchronization features. The two tests conducted in

a lab and village setting while in COCO‟s online mode are:

1. Compare the time it takes the „download‟ feature to complete

for a small and large data set. This feature involves

downloading a partition of the global repository to the local

machine.

2. Compare the time it takes the „upload‟ feature to complete

for a small and large data set. This feature involves

uploading offline changes back to the global repository.

4.2 Results
We describe and compare functional test results for retrieving

content, using Digital Green‟s application as an example [20].

Built as a traditional web application, the data input application

requesting a simple web form that requires 1 HTTP GET request

for HTML content and 4 additional GET requests to load images

and CSS, resulting in a total of 5 GET requests. In COCO‟s

online mode, the number of requests remains the same unless the

user has previously gone offline once, in which case, except for

any dynamic data request, the local cache – separate from a

browser cache -- serves all static content, resulting in a total of 1

GET request. In COCO‟s offline mode, 0 GET requests are made.

Since requests are driven by the application, these results hold

true for both lab and village test environments.

We now compare our latency measurements across both test

environments. A simple test in our lab showed download

bandwidth speed of 880kbps, and upload of 440kbps. Contrast

these speeds with our Digital Green example village at

Surshetikoppa, Karnataka, India, and we get a download speed of

about 7kbps, and an upload speed of 3kbps. Running „traceroute

<server_location>‟ showed an added 350ms for a transatlantic

hop from Delhi to New York, USA, and back. With these

statistics in mind, we conducted our tests across the

aforementioned modes of operation. We begin by measuring

latency for loading a simple web form in a lab. For a traditional

Digital Green data input application, the combination of 5 GET

requests took < 1 second. In COCO‟s online mode, a page load

took the same amount of time, but fared better after going offline

once, which allowed the local cache to warm up by storing all

requisite images and CSS. The resulting GET request to retrieve

HTML content took 0.25ms. There were no measurements taken

for offline COCO, since this mode does not issue any HTTP

requests.

We now present our results for the example village. Assuming an

uninterrupted bandwidth supply, loading a simple web form by

the traditional web application and online COCO took about 20s.

However, COCO in online mode after offline usage fared much

better, with an average page load of about 5s. As described

earlier, no latency was experienced in COCO offline mode.

Although in an attempt to compare overall experience, we did

measure absolute page load time, which were in the sub-second

range.

Results for tests comparing synchronization tasks for a lab and

village setting were also collected. As expected, the results are a

function of bandwidth speeds, with an added assumption that

uninterrupted bandwidth was available at the village.

Our tests show that application usage patterns amortized over time

perform better on COCO compared to a traditional web

application. In the case of online access, COCO‟s online mode

performs on par or better depending on prior usage patterns.

COCO‟s offline capabilities allow for continued usage and

execution speed, making any comparison to a traditional web

application on these parameters moot.

5. CONCLUSION & FUTURE WORK
In this paper, our motivation was to build a system that offers a

solution for data tracking and analytics to organizations,

especially NGOs, operating in poor, intermittent connectivity

areas. Increasingly, NGOs are being asked to prove their

effectiveness through more sophisticated, technology driven

methods. This paper seeks to introduce the COCO framework as

an inexpensive, fast, and robust data collection and analytics

system for organizations operating in remote locations. Our

evaluation and results show the effectiveness of COCO in online

mode as compared to a traditional web application, and its ability

to continue to operate in intermittent to zero connectivity areas.

At its core, the COCO system is a framework that seeks to

contribute these features and benefits to organizations with similar

desires.

Looking forward, we intend to make COCO extensible to

interoperate with other platforms. COCO currently uses Google

Gears as it provides a local server that caches and serves

application resources locally and a SQLite database to store user's

data. The latest version of the HTML standard, HTML 5 [21],

comes bundled with an application cache to serve the application

resources locally and a SQL database for local storage.

We plan to make the COCO application adapt well to the local

bandwidth conditions by estimating bandwidth and setting

application parameters dynamically. This will further enhance the

performance of COCO on lower bandwidth connections.

Currently, users are required to manually toggle between “Online/

Offline” modes. A possible optimization could be to automate

this process. This will require some automated detection of

network access, which is challenging as network bandwidth has a

continuous spread. The reason for the application to be offline

could be any of these - the browser has the 'work offline' flag set,

the network cable is unplugged, (Domain Name System) DNS is

down, the server is unreachable or the server has a bug and cannot

process your request etc.

We plan to integrate an analytics layer to enable users to analyze

data as it is inputted to the application. Going forward, we are

also looking at a possibility of integrating COCO with existing

customer resource management (CRM) systems, like Salesforce.

This will enable existing applications on different CRM platforms

to operate on the browser and work offline with enhanced

performance.

6. ACKNOWLEDGMENTS
We extend our gratitude to Rikin Gandhi and Kentaro Toyama for

helping review this paper. We thank Digital Green for the

inspiration. We are also grateful to our partner NGOs--Pradhan,

Varrat, BAIF and SPS--for their support and cooperation in

testing this system.

7. REFERENCES
[1] Salesforce.

http://www.salesforce.com.

[2] Microsoft .NET Customer solution case study. Rural

Banking comes of age in India.

http://srichidsirvice.com/downloads/ruralbanking_comes_ag

e.pdf.

[3] S.M. Mishra, J. Hwang, D. Filippini, T. Du, R. Moazzami,

and L. Subramanian. 2005. Economic Analysis of

Networking Technologies for Rural Developing Regions. 1st

Workshop on Internet and Network Economics.

[4] G. Singh, L. Findlater, K. Toyama, S. Helmer, R.Gandhi, R.

Balakrishnan. 2009. Numeric Paper Forms for NGOs.

Proceedings of the 3rd International Conference on

Information and Communication Technologies and

Development.

[5] J. Chen, L. Subramanian, and K. Toyama.2009. Web

Browsing under Poor Connectivity. CHI Proceedings on

Human Factors in Computing Systems.

[6] A. Leff and J.T. Rayfield. 2001. Web-application

development using the model/view/controller design pattern.

pp. 118–127.

[7] aAqua Portal.

http://www.aaqua.org.

[8] S. Sahni and K. Ramamritham. 2007. Delay Tolerant.

Applications for Low Bandwidth and Intermittently

Connected Users: the aAQUA Experience. WWW2007,

Banff, Canada.

[9] J. Chan, L. Subramanian, J. Li. 2009. RuralCafe: Web

Search in the Rural Developing World. WWW 2009 Madrid.

[10] L. Subramanian. A Low-Cost Efficient Wireless

Architecture for Rural Network.

http://www.cs.nyu.edu/~lakshmi/wire.pdf.

[11] S. C. Rhea, K. Liang, and E. Brewer. 2003. Value-Based

Web Caching. Proceedings of 12th WWW Conference.

[12] H. Chang, C. Tait, N. Cohen, M. Shapiro, S. Mastrianni, R.

Floyd, B. Housel,and D. Lindquist.1997. Web browsing in a

wireless environment: disconnected and asynchronous

operation in artour web express. MobiCom ‟97: Proceedings

of the 3rd annual ACM/IEEE international conference on

Mobile computing and networking, pages 260–269, New

York, NY, USA.

[13] R. Veeraraghavan, N. Yasodhar, K. Toyama 2007. Warana

Unwired: Replacing PCs with Mobile Phones in a Rural

Sugarcane Cooperative. International Conference on

Information & Communication Technologies for

Development. Bangalore.

[14] Django.

http://www.djangoproject.com.

[15] Ruby on Rails.

 http://rubyonrails.org/.

[16] Google Web Toolkit. http://code.google.com/webtoolkit/.

[17] JSON.

http://www.json.org.

[18] Google Gears.

http://gears.google.com/.

[19] Gandhi, R., Veeraraghavan, R., Toyama, K., &Ramprasad,

V. 2007. Digital Green: Participatory video for agricultural

http://www.salesforce.com/
http://srichidsirvice.com/downloads/ruralbanking_comes_age.pdf
http://srichidsirvice.com/downloads/ruralbanking_comes_age.pdf
http://www.aaqua.org/
http://www.cs.nyu.edu/~lakshmi/wire.pdf
http://www.djangoproject.com/
http://rubyonrails.org/
http://code.google.com/webtoolkit/
http://www.json.org/
http://gears.google.com/

extension. Proceedings of the IEEE/ACM International

Conference on Information and Communication

Technologies and Development.Bangalore, India.

[20] Digital Green admin site.

http://www.digitalgreen.org/admin/.

[21] HTML 5, Latest published version. Editor:I. Hickson, 2010.

http://www.w3.org/TR/html5/.

[22] L. Levison, W. Thies, and S. Amarasinghe. 2002. Providing

Web search capability for low-connectivity communities.

ISTAS, pages87–91.

[23] W. Thies et al. Searching the world wide web in low-

connectivity communities. WWW, 2002.

[24] A. Pentland, R. Fletcher, and A. Hasson. DakNet:rethinking

connectivity in developing nations. Computer, 37(1):78–83,

2004.

[25] United Villages. http://www.unitedvillages.com.

[26] K. Fall. A delay tolerant network architecture for challenged

internets, 2003.

[27] S. Jain, K. Fall, and R. Patra. Routing in a Delay Tolerant

Network. In Proc. ACM SIGCOMM, pages 145–158,

August 2004.

[28] James J. Kistler and M. Satyanarayanan. Disconnected

Operation in the Coda File System. In Proc. of the 13th

ACM Symposium on Operating Systems Principles (SOSP),

1991.

[29] M. Demmer , B. Du , E. Brewer. TierStore: a distributed

filesystem for challenged networks in developing regions.

Proceedings of the 6th USENIX Conference on File and

Storage Technologies, p.1-14, February 26-29, 2008, San

Jose, California.

[30] Tapan S. Parikh. Using Mobile Phones for Secure,

Distributed Document Processing in the Developing World.

IEEE Pervasive Computing, v.4 n.2, p.74-81, April 2005.

[31] Open Data Kit. http://opendatakit.org .

[32] Y. Anokwa, C. Hartung, W. Brunette, A. Lerer, G. Borriello.

Open Source Data Collection in the Developing World.

IEEE Computer Magazine.2009.

[33] R. Y. Wang, S. Sobti, N. Garg, E. Ziskind, J. Lai, and A.

Krishnamurthy. Turning the postal system into a generic

digital communication mechanism. ACM SIGCOMM, pages

159-166, Portland, OR, Aug. 2004

http://www.digitalgreen.org/admin/
http://www.w3.org/TR/html5/
http://www.unitedvillages.com/
http://opendatakit.org/

